How do you graph the parabola #y = x^2 -12# using vertex, intercepts and additional points?

1 Answer
May 22, 2018

Refer to the explanation.

Explanation:

Given:

#y=x^2-12#

This is a quadratic equation in standard form:

#y=ax^2+bx+c#,

where:

#a=1#, #b=0#, #c=-12#

Vertex: maximum or minimum point of the parabola.

The x-coordinate of the vertex is found using the formula for the axis of symmetry:

#x=(-b)/(2a)#

#x=0/2#

#x=0#

To find the y-coordinate of the vertex, substitute #0# for #x# and solve for #y#.

#y=0^2-12#

#y=-12#

The vertex is #(0,-12)#

Y-intercept: value of #y# when #x=0# is also #(0,12)#.

X-intercepts: values of #x# when #y=0#

Substitute #0# for #y#.

#0=x^2-12#

Add #12# to both sides.

#12=x^2#

Switch sides.

#sqrt(x^2)=+-sqrt12#

Apply rule #sqrt(a^2)=a#

#x=+-sqrt12#

Prime factorize #12#.

#x=+-sqrt(2xx2xx3)#

Rewrite in exponent form.

#x=+-sqrt(2^2xx3)#

Apply rule: #sqrt(a^2)=a#

#x=+-2sqrt3#

The x-intercepts are #(2sqrt3,0)# and #(-2sqrt3,0)#.

Approximate x-intercepts: #(3.464,0)# and #(-3.464,0)#

Additional Points

Choose values for the x-coordinates, substitute for #x# in the equation, and solve for #y#.

Additional point 1

#x=2#

#y=2^2-12#

#y=4-12#

#y=-8

Point: #(2,-8)#

Additional point 2

#x=-2#

#y=(-2)^2-12#

#y=4-12#

#y=-8#

Point: #(-2,-8)#

Additional point 3

#x=4#

#y=4^2-12#

#y=16-12#

#y=4#

Point: #(4,4)#

Additional point 4

#x=-4#

#y=(-4)^2-12#

#y=16-12#

#y=4#

Point: #(-4,4)#

Summary

Vertex: #(0,-12)#

Y-intercept: #(0,-12)#

X-intercepts: #(2sqrt3,0)# and #(-2sqrt3,0)#.

Approximate x-intercepts: #(3.464,0)# and #(-3.464,0)#

Additional points: #(2,-8)#, #(-2,-8)#, #(4,4)#, #(-4,4)#

Plot the points and sketch a parabola through them. Do not connect the dots.

graph{y=x^2-12 [-14.42, 14.05, -17.48, -3.25]}