How do you graph #y=3csc(pi/2x+pi/2)#?

1 Answer
Jun 7, 2018

As below.

Explanation:

Standard form of co-secant function #color(red)(y = A csc(Bx - C) + D#

#"Given " y = 3 csc ((pi/2)x + pi/2)#

#"Amplitude " = |A| = color(crimson)("NONE ") " for co-secant function"#

#"Period " = (2pi) / |B| = (2pi) / (pi/2) = 4#

#"Phase Shift " = -C / B = -(pi/2) / (pi/2) = -1#

#"Vertical Shift " = D = 0#

graph{3 csc ((pi/2)x + (pi/2)) [-10, 10, -5, 5]}