How do you graph #y=sin2(x-(3pi)/4)#?

1 Answer
Mar 23, 2018

Answer:

See below.

Explanation:

Standard form of equation is #y = A sin (Bx - C) + D#

Given equation is #y = sin (2x - ((3pi)/2))#

#Amplitude =| A| = 1 #

#"Period = P = (2pi) / |B| = (2pi) / 2 = pi#

#"Phase Shift " = (-C/B) = ((3pi)/2) / 2 = (3pi)/4#

#"Vertical Shift " = D = 0#

graph{sin(2x - ((3pi)/2 graph{sin(2x - ((3pi)/2)) [-10, 10, -5, 5]} )) [-10, 10, -5, 5]}