How do you graph #y = (x + 2) (3x + 2) #?
1 Answer
see explanation.
Explanation:
The standard form of the
#color(blue)"quadratic function"# is.
#color(red)(bar(ul(|color(white)(2/2)color(black)(y=ax^2+bx+c ; a!=0)color(white)(2/2)|)))#
#rArry=(x+2)(3x+2)=3x^2+8x+4#
#rArr"here " a=3,b=8" and " c=4# To find the
#color(blue)"x and y intercepts"#
#x=0toy=4larrcolor(red)" y-intercept"#
#y=0to(x+2)(3x+2)=0#
#rArrx=-2" or " x=-2/3larrcolor(red)"x-intercepts"# To find the
#color(blue)"vertex"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(x_("vertex")=-b/(2a))color(white)(2/2)|)))#
#rArrx_("vertex")=-8/6=-4/3# Substitute this value into equation and solve for y
#rArry_("vertex")=3(-4/3)^2+8(-4/3)+4=-4/3#
#rArrcolor(red)"vertex "=(-4/3,-4/3)# To find
#color(blue)"maximum/minimum"#
#• "If " a>0" then minimum " uuu#
#• " If " a < 0" then maximum " nnn #
#"here " a=3>0" hence " uuu#
graph{3x^2+8x+4 [-11.25, 11.25, -5.63, 5.62]}