How do you graph #y = (x + 2) (3x + 2) #?

1 Answer
Mar 25, 2017

see explanation.

Explanation:

The standard form of the #color(blue)"quadratic function"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y=ax^2+bx+c ; a!=0)color(white)(2/2)|)))#

#rArry=(x+2)(3x+2)=3x^2+8x+4#

#rArr"here " a=3,b=8" and " c=4#

To find the #color(blue)"x and y intercepts"#

#x=0toy=4larrcolor(red)" y-intercept"#

#y=0to(x+2)(3x+2)=0#

#rArrx=-2" or " x=-2/3larrcolor(red)"x-intercepts"#

To find the #color(blue)"vertex"#

#color(red)(bar(ul(|color(white)(2/2)color(black)(x_("vertex")=-b/(2a))color(white)(2/2)|)))#

#rArrx_("vertex")=-8/6=-4/3#

Substitute this value into equation and solve for y

#rArry_("vertex")=3(-4/3)^2+8(-4/3)+4=-4/3#

#rArrcolor(red)"vertex "=(-4/3,-4/3)#

To find #color(blue)"maximum/minimum"#

#• "If " a>0" then minimum " uuu#

#• " If " a < 0" then maximum " nnn #

#"here " a=3>0" hence " uuu#
graph{3x^2+8x+4 [-11.25, 11.25, -5.63, 5.62]}