How do you identify #tantheta/(1-cos^2theta)#?

1 Answer
Jan 30, 2017

The expression can be simplified to #secthetacsctheta#

Explanation:

First of all, apply the identity #sin^2theta + cos^2theta = 1 -> sin^2theta = 1 - cos^2theta#:

#=tantheta/sin^2theta#

Now convert #tantheta# to #sintheta/costheta#.

#=(sin theta/costheta)/sin^2theta#

#= sin theta/costheta * 1/sin^2theta#

#=1/(costhetasintheta)#

Apply the identities #1/costheta = sectheta# and #1/sintheta = csctheta#.

#=secthetacsctheta#

Hopefully this helps!