How do you integrate #1/((1+x^2)^2)#?
1 Answer
Explanation:
#I=intdx/(1+x^2)^2#
We will use the substitution
#I=int(sec^2thetad theta)/(1+tan^2theta)^2#
Note that
#I=int(sec^2thetad theta)/sec^4theta=int(d theta)/sec^2theta=intcos^2thetad theta#
Recall that
#I=1/2intcos2thetad theta+int1/2d theta#
The first integral can be found with substitution (try
#I=1/4sin2theta+1/2theta+C#
From
Furthermore, we see that
Also, since
#I=1/2sinthetacostheta+1/2arctanx+C#
#I=1/2(x/sqrt(1+x^2))(1/sqrt(1+x^2))+arctanx/2+C#
#I=x/(2(1+x^2))+arctanx/2+C#