How do you integrate #1/((1+x^2)^2)#?

1 Answer
Oct 2, 2016

#x/(2+2x^2)+arctanx/2+C#

Explanation:

#I=intdx/(1+x^2)^2#

We will use the substitution #x=tantheta#, implying that #dx=sec^2thetad theta#:

#I=int(sec^2thetad theta)/(1+tan^2theta)^2#

Note that #1+tan^2theta=sec^2theta#:

#I=int(sec^2thetad theta)/sec^4theta=int(d theta)/sec^2theta=intcos^2thetad theta#

Recall that #cos2theta=2cos^2theta-1#, so #cos^2theta=1/2cos2theta+1/2#.

#I=1/2intcos2thetad theta+int1/2d theta#

The first integral can be found with substitution (try #u=2theta#).

#I=1/4sin2theta+1/2theta+C#

From #x=tantheta# we see that #theta=arctanx#.

Furthermore, we see that #1/4sin2theta=1/4(2sinthetacostheta)=1/2sinthetacostheta#.

Also, since #tantheta=x#, we can draw a right triangle with the side opposite #theta# being #x#, the adjacent side being #1#, and the hypotenuse being #sqrt(1+x^2)#. Thus, #sintheta=x/sqrt(1+x^2)# and #costheta=1/sqrt(1+x^2)#:

#I=1/2sinthetacostheta+1/2arctanx+C#

#I=1/2(x/sqrt(1+x^2))(1/sqrt(1+x^2))+arctanx/2+C#

#I=x/(2(1+x^2))+arctanx/2+C#