How do you integrate #(1-x^2)^.5#?
1 Answer
Oct 12, 2016
Explanation:
Let
Then:
#int (1-x^2)^0.5 dx = int (1-sin^2 theta)^0.5 ((d sin theta)/(d theta)) d theta#
#color(white)(int (1-x^2)^0.5 dx) = int (cos^2 theta)^0.5 (cos theta) d theta#
#color(white)(int (1-x^2)^0.5 dx) = int cos^2 theta d theta#
#color(white)(int (1-x^2)^0.5 dx) = int 1/2(cos 2 theta + 1) d theta#
#color(white)(int (1-x^2)^0.5 dx) = 1/4 sin 2 theta + theta/2 + C#
#color(white)(int (1-x^2)^0.5 dx) = 1/2 sin theta cos theta + theta/2 + C#
#color(white)(int (1-x^2)^0.5 dx) = 1/2 x sqrt(1-x^2) + 1/2 sin^(-1)x + C#