How do you integrate #int 1/sqrt(4x^2-12x-7) # using trigonometric substitution?

2 Answers
Jun 27, 2018

(2x-a)^2=4x^2-4ax+a^2

Explanation:

#int1/sqrt(4x^2-12x-7)dx=int1/sqrt((2x-3)^2-16)dx#

#int1/sqrt(16((2x-3)^2/16-1))dx=1/4int1/sqrt(((2x-3)/4)^2-1)dx#

Let #u=x/2-3/4# therefore #2du=dx#

#1/2int1/sqrt(u^2-1)=i/2int-1/sqrt(1-u^2)#

#i/2cos^-1((2x-3)/4)#

Jun 27, 2018

The answer is #=1/2ln(|(2x-3)/4+sqrt((((2x-3)/(4))^2)-1)|)+C#

Explanation:

Rewrite

#4x^2-12x-7=(2x-3)^2-16#

#=4^2(((2x-3)/4)^2-1)#

Therefore,

#sqrt(4x^2-12x-7)=sqrt(4^2(((2x-3)/4)^2-1))#

#=4sqrt((((2x-3)/4)^2-1))#

The integral is

#I=int(dx)/(sqrt(4x^2-12x-7))=1/4int(dx)/(sqrt((((2x-3)/4)^2-1)))#

Let #u=(2x-3)/4#, #=>#, #du=dx/2#

Therefore,

#I=1/4int(2du)/(sqrt(u^2-1))=1/2int(du)/sqrt(u^2-1)#

Let #u=secv#, #=>#, #du=secvtanvdv#

#sec^2v-1=tan^2v#

The integral is

#I=1/2int(secvtanvdv)/sqrt(sec^2v-1)#

#=1/2intsecvdv#

#=1/2int(secv(secv+tanv)dv)/(secv+tanv)#

Let #w=secv+tanv#, #=>#, #dw=(secvtanv+sec^2v)dv#

Therefore,

#I=1/2int(dw)/w#

#=1/2ln(w)#

#=1/2ln(secv+tanv)#

#=1/2ln(u+sqrt(u^2-1))#

#=1/2ln((2x-3)/4+sqrt((((2x-3)/(4))^2)-1))#

#=1/2ln(|(2x-3)/4+sqrt((((2x-3)/(4))^2)-1)|)+C#