How do you integrate #int 4arccosx# by parts?

1 Answer
Jun 14, 2017

#int4arccosxdx=4xarccosx-4(1-x^2)^(1/2)+C#

Explanation:

IBP formula

#I=intu(dv)/(dx)dx=uv-intv(du)/(dx)dx#

we have

#I=int4arccosxdx#

#I=int4cos^(-1)xdx=4int(1xxcos^(-1)x)dx##

the success of using IBP is the correct identification of the #u" "#&#" "(dv)/(dx)" "#

in this case

#u=cos^(-1)x=>(du)/(dx)=-1/sqrt(1-x^2#

#(dv)/(dx)=1=>v=x#

#I=intu(dv)/(dx)dx=uv-intv(du)/(dx)dx#

becomes

#I=4[xcos^(-1)x-int(-x/sqrt(1-x^2)dx]#

now the second integral can be done by inspection

#int(-x/sqrt(1-x^2))dx=int (-x(1-x^2)^(-1/2))dx#

the outside is a multiple of the bracket differentiated

so we can guess the integral as the bracket to the power +1

ie#" "(1-x^2)^(1/2)#

try this out

#d/(dx)((1-x^2)^(1/2))#

#=1/2xx(-2x)(1-x^2)^(-1/2)#

#=-x(1-x^2)^(-1/2)#

which is the integral we want

so the final integral is;

#int4arccosxdx=4xarccosx-4(1-x^2)^(1/2)+C#