How do you integrate #int (9+x^2)/sqrt(4 - x^2)dx# using trigonometric substitution?

1 Answer
Apr 2, 2018

#11sin^(-1)(x/2) + 4 sin(2sin^(-1)(x/2))#

Explanation:

#int (9 + x^2)/sqrt(4-x^2)#
Sub x=2 sin #theta#
#dx/d(theta)#=2cos#theta#
#int(9+4(sin theta))^2/sqrt(4(cos theta)^2)# x 2cos#theta#
=#int 9+4 (sin theta)^2#
= #int 9 + 4 times 1/2(1-cos2 theta)#

--> #cos2 theta = (cos theta)^2-(sin theta)^2#
--> #cos 2 theta = 1-2(sin theta)^2#
--> #(sin theta)^2 = 1/2(1-cos2 theta)#

= #int 9 +2-2cos2theta#
= #int 11-2cos2 theta#
= #11theta+4sin 2theta#
= #11sin^(-1)(x/2) + 4 sin(2sin^(-1)(x/2))#