How do you integrate #\int ( \sec ^ { 2} x - e ^ { x } + \sin x ) d x#?
1 Answer
Jul 1, 2017
Explanation:
#"note " d/dx(tanx)=sec^2x#
#rArrintsec^2xdx=tanx#
#rArrint(sec^2x-e^x+sinx)dx#
#=tanx-e^x-cosx+c#
#"where c is the constant of integration"#