How do you integrate #int sqrtx e^x dx # using integration by parts?

1 Answer
Jun 10, 2018

#sqrtxe^x-(sqrtpierfi(sqrtx))/2+C#

Explanation:

Problem:
#intsqrtxe^xdx#

Integrate by parts: #intfgprime=fg-intfprimeg#
#f=sqrtx#, #gprime=e^x#
#darr#
#fprime=1/(2sqrtx),g=e^x:#
=#sqrtxe^x-inte^x/(2sqrtx)dx#

Now solving:
#inte^x/(2sqrtx)dx#
Substitute #u=sqrtx->dx=2sqrtxdu:#
=#sqrtpi/2int(2e^[u^2])/sqrtpidu#

Now solving:
#int(2e^[u^2])/sqrtpidu#

This is a special integral, imaginary error function:
#=erfi(u)#

Plug in solved integrals:
#sqrtpi/2int(2e^[u^2])/sqrtpidu#
=#[sqrtpierfi(u)]/2#

Undo substitution #u=sqrtx:#
=#[sqrtpierfi(sqrtx)]/2#

Plug in solved integrals:
#sqrtxe^x-inte^x/2sqrtxdx#
=#sqrtxe^x-[sqrtpierfi(sqrtx)]/2#

The problem is solved:
#intsqrtxe^xdx#
=#sqrtxe^x-(sqrtpierfi(sqrtx))/2+C#