How do you integrate int tcosht using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer sjc Jan 12, 2017 tsinht-cosht+C Explanation: It is important to know the IBP formula I=intuv'dx=uv-intvu'dx I=inttcoshtdt u=t=>u'=1 v'=cosht=>v=sinht I=tsinht-intsinhtdt I=tsinht-cosht+C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 2055 views around the world You can reuse this answer Creative Commons License