How do you integrate #int tcsctcott# by parts?

1 Answer
Feb 18, 2017

#inttcsctcottdt = -tcsct - ln|csct + cott| + C#

Explanation:

Let #dv = csctcottdt# and #u = t#. This means that #v= -csct# and #du = dt#.

Through integration by parts, we have:

#intudv = uv - intvdu#

#inttcsctcottdt = t(-csct) - int(-csctdt)#

#inttcsctcottdt = -tcsct + intcsctdt#

The integral of #csct# can be found here

#inttcsctcottdt = -tcsct - ln|csct + cott| + C#

Hopefully this helps!