How do you integrate #int x^5e^(-x^3)#?

1 Answer
Nov 16, 2017

#int x^5e^(-x^3)dx = -(e^(-x^3)(x^3+1))/3 +C#

Explanation:

Substitute #t=x^3# so that #dt=3x^2dx# and note that:

#x^5dx = x^3/3*3x^2dx = (tdt)/3#

We then have:

#int x^5e^(-x^3)dx = 1/3 int te^(-t)dt#

Now integrate by parts using #t# as integer factor:

#int te^(-t)dt = -int td(e^(-t)) =-te^(-t) + int e^(-t)dt = -e^(-t)(t+1)+C#

and undoing the substitution:

#int x^5e^(-x^3)dx = -(e^(-x^3)(x^3+1))/3 +C#