How do you integrate #int x cos sqrtx dx # using integration by parts?
1 Answer
Explanation:
Before using integration by parts, let
So:
#I=intxcos(sqrtx)dx=intt^2cos(t)(2tdt)=int2t^3cos(t)dt#
Now we should apply integration by parts. IBP takes the form
#{(u=2t^3,=>,du=6t^2dt),(dv=cos(t)dt,=>,v=sin(t)):}#
Then:
#I=uv-intvdu=2t^3sin(t)-int6t^2sin(t)dt#
For
#{(u=6t^2,=>,du=12tdt),(dv=sin(t)dt,=>,v=-cos(t)):}#
Now:
#I=2t^3sin(t)-[-6t^2cos(t)+int12tcos(t)dt]#
#I=2t^3sin(t)+6t^2cos(t)-int12tcos(t)dt#
Reapplying IBP:
#{(u=12t,=>,du=12dt),(dv=cos(t)dt,=>,v=sin(t)):}#
#I=2t^3sin(t)+6t^2cos(t)-[12tsin(t)-int12sin(t)dt]#
#I=2t^3sin(t)+6t^2cos(t)-12tsin(t)+int12sin(t)dt#
Since
#I=2t^3sin(t)+6t^2cos(t)-12tsin(t)-12cos(t)#
Factoring:
#I=2(tsin(t)(t^2-6)+3cos(t)(t^2-2))#
Since
#I=2(sqrtxsin(sqrtx)(x-6)+3cos(sqrtx)(x-2))+C#