How do you integrate #int x/sqrt(2+3x)# by parts?
2 Answers
# int x/sqrt(2+3x)dx = 2/27sqrt(2+3x)(3x - 4) + C#
Explanation:
You would not integrate this integral By Parts, instead you would use a substitution ;
Let
And,
Applying this substitution to the problem gives us:
# int x/sqrt(2+3x)dx = int (1/3(u-2))/sqrt(u)(1/3)du#
# :. int x/sqrt(2+3x)dx = 1/9 int (u-2)u^(-1/2)du#
# :. int x/sqrt(2+3x)dx = 1/9 int u^(1/2)-2u^(-1/2)du#
# :. int x/sqrt(2+3x)dx = 1/9 {u^(3/2)/(3/2) - (2u^(1/2))/(1/2)} + C#
# :. int x/sqrt(2+3x)dx = 1/9 u^(1/2){2/3u - 4} + C#
# :. int x/sqrt(2+3x)dx = 1/9 u^(1/2){2/3(u - 6)} + C#
# :. int x/sqrt(2+3x)dx = 2/27 u^(1/2)(u - 6) + C#
Substituting for
# int x/sqrt(2+3x)dx = 2/27sqrt(2+3x)(2+3x - 6) + C#
# :. int x/sqrt(2+3x)dx = 2/27sqrt(2+3x)(3x - 4) + C#
Please see below.
Explanation:
Let
This make
# = 2/9x(2+3x)^(1/2) - 2/3 int (2+3x)^(1/2) dx#
# = 2/3x(2+3x)^(1/2) - 2/3 [ 2/9(2+3x)^(3/2) ] +C# (by substitution)
Clean up the algebra as desired.