How do you integrate #int xsin(4x)# by integration by parts method?
2 Answers
Explanation:
which by IBP:
Explanation:
Before integrating by parts, we can first use substitution to get rid of the
Let
#ttintxsin(4x)dx=1/4intcolor(green)4color(blue)xsin(color(purple)(4x))color(green)(dx)=1/4intt/4sin(t)dt=1/16inttsin(t)dt#
Now is a better time to use integration by parts, which takes the form:
#intudv=uv-intvdu#
So, for
#color(red)(u=t)" "=>" "du=dt#
#color(brown)(dv=sin(t)dt)" "=>" "intdv=intsin(t)dt" "=>" "v=-cos(t)#
This gives us, following
#inttsin(t)dt=-tcos(t)-int(-cos(t))dt#
#=-tcos(t)+intcos(t)dt#
#=-tcos(t)+sin(t)#
Since
#inttsin(t)dt=-4xcos(4x)+sin(4x)#
And since
#intxsin(4x)dx=-1/4xcos(4x)+1/16sin(4x)+C#