How do you integrate # ln(3x+4)#?

1 Answer
Aug 7, 2017

# I = int \ ln(3x+4) \ dx = ((3x+4)(ln(3x+4)-1))/3 + C #

Explanation:

We seek:

# I = int \ ln(3x+4) \ dx #

First we perform a substitution:

Let #t=3x+4 => (dt)/dx = 3 #

Substituting into the integral we get:

# I = 1/3 \ int \ ln(3x+4) \ 3 \ dx #
# \ \ = 1/3 \ int \ ln(t) \ dt #

We can use Integration By Parts (IBP):

# int \ u(dv)/dx \ dx = uv - int \ v(du)/dx \ dx #, or less formally
# " " int \ u \ dv=uv-int \ v \ du #

Let # { (u,=lnt, => (dt)/dx,=1/t), ((dv)/dt,=1, => v,=t ) :}#

Then plugging into the IBP formula:

# int \ ln(t)(1) \ dt = (ln(t))(t) - int \ (t)(1/t) \ dt #
# :. int \ lnt \ dt = tlnt - int \ dt #
# :. int \ lnt \ dt = tlnt - t #

Hence we have:

# I = 1/3 \ (tlnt-t) + C #

Restoring the substitution we get:

# I = 1/3 \ ((3x+4)ln(3x+4)-(3x+4)) + C #
# \ \ = ((3x+4)(ln(3x+4)-1))/3 + C #