How do you integrate # x * cos^2 (x)#?

1 Answer
Nov 5, 2016

The answer is #=x^2/4+(xsin2x)/4+(cos2x)/8+C#

Explanation:

First replace #cos^2x# by #1/2(1+cos2x)#
As #cos2x=2cos^2x-1#
#:.intxcos^2xdx=1/2int(x+xcos2x)dx#

#=1/2*x^2/2+1/2intxcos2xdx#

We integrate the last integral by parts
#u=x##=>##u'=1#
#v'=cos2x##=>##v=(sin2x)/2#
So #intxcos2xdx=(xsin2x)/2-1/2intsin2xdx#
#=(xsin2x)/2+(cos2x)/4#
Putting it all together

#intxcos^2xdx=x^2/4+(xsin2x)/4+(cos2x)/8+C#