How do you multiply #(3b-3c)^2#?

1 Answer
Feb 14, 2017

See the entire solution process below:

Explanation:

This expression can be rewritten as:

#(3b - 3c)(3b - 3c)#

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

#(color(red)(3b) - color(red)(3c))(color(blue)(3b) - color(blue)(3c))# becomes:

#(color(red)(3b) xx color(blue)(3b)) - (color(red)(3b) xx color(blue)(3c)) - (color(red)(3c) xx color(blue)(3b)) + (color(red)(3c) xx color(blue)(3c))#

#9b^2 - 9bc - 9bc + 9c^2#

We can now combine like terms:

#9b^2 + (-9 - 9)bc + 9c^2#

#9b^2 + (-18)bc + 9c^2#

#9b^2 - 18bc + 9c^2#