# How do you multiply (4x + 3) ( 5x - 8)?

May 11, 2018

$20 {x}^{2} - 17 x - 24$

#### Explanation:

To multiply this you have to multiply the first two terms inside the first parenthesis which are $4 x + 3 x$ by the other two terms $5 x - 8.$

You multiply $4 x \cdot 5 x$ and then by $- 8$ then you do the same with the $3$.

you will get 2$0 {x}^{2} - 32 x + 15 x - 24$ then you combine like terms which are $- 32 x + 15 x$ and you get $20 {x}^{2} - 17 x - 24$.

Hope this helps

May 11, 2018

Well, the answer is $20 {x}^{2} - 17 x - 24$

#### Explanation:

How to figure it out.

take the equations and do this: $\left(4 x + 3\right) \left(5 x + - 8\right)$
(you have to make the equations positive, so make numbers negative)

Multiply $\left(4 x\right) \left(5 x\right) + \left(4 x\right) \left(- 8\right) + \left(3\right) \left(5 x\right) + \left(3\right) \left(- 8\right)$
(distributive property)

$20 {x}^{2} - 32 x + 15 x - 24$

$20 {x}^{2} - 17 x - 24$

May 11, 2018

Use the distributive property of multiplication.
20x^2 − 17x − 24

#### Explanation:

 (4x+3)(5x−8)

4x(5x−8) + 3(5x−8)

20x^2 − 32x + 15x − 24

20x^2 − 17x − 24

May 11, 2018

Apply the property distributive.

#### Explanation:

The property distributive say that if you have $a \left(c + d\right)$ then you can have $a \cdot c + a \cdot d$, applying in your problem this same idea we have this result bellow:

$\left(4 x + 3\right) \left(5 x - 8\right) = 4 x \cdot 5 x - 8 \cdot 4 x + 3 \cdot 5 x - 3 \cdot 8 =$

$= 20 {x}^{2} - 32 x + 15 x - 24$
$= 20 {x}^{2} - 17 x - 24$