How do you multiply #5y^{3} x^{8} \cdot 2x^{5} \cdot 3y#?

1 Answer
Sep 24, 2016

#5y^{3} x^{8} xx 2x^{5} xx 3y = 30x^13y^4#

Explanation:

You can multiply any values together.

#rarr# multiply the signs - they are all positive in this case
#rarr# multiply the numbers
#rarr# add the indices of like bases.

#5y^{3} x^{8} xx 2x^{5} xx 3y#

Let's do one part at a a time....

#5xx2xx3 = 30#
#x^8 xx x^5 = x^13#
#y^3 xx y^ = y^4#

Now put the parts together...

=#5y^{3} x^{8} xx 2x^{5} xx 3y = 30x^13y^4#