How do you multiply #8v ^ { 6} u ^ { 6} \cdot 3v \cdot 2u ^ { 5}#?

1 Answer
Jul 21, 2017

See a solution process below:

Explanation:

First, rewrite the expression as:

#(8 * 3 * 2)(u^6 * u^5)(v^6 * v) =>#

#48(u^6 * u^5)(v^6 * v)#

Next, use this rule of exponents to rewrite the right most #v# term:

#a = a^color(red)(1)#

#48(u^6 * u^5)(v^6 * v^color(red)(1))#

Now, use this rule of exponents to multiply both the #u# and #v# terms:

#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#48(u^color(red)(6) * u^(color(blue)(5)))(v^color(red)(6) * v^color(blue)(1)) =>#

#48u^(color(red)(6)+color(blue)(5))v^(color(red)(6)+color(blue)(1)) =>#

#48u^11v^7#