How do you multiply #(9a + 2) ( 4a ^ { 2} + 3a + 3)#?

1 Answer
Jul 20, 2017

See a solution process below:

Explanation:

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

#(color(red)(9a) + color(red)(2))(color(blue)(4a^2) + color(blue)(3a) + color(blue)(3))# becomes:

#(color(red)(9a) xx color(blue)(4a^2)) + (color(red)(9a) xx color(blue)(3a)) + (color(red)(9a) xx color(blue)(3)) + (color(red)(2) xx color(blue)(4a^2)) + (color(red)(2) xx color(blue)(3a)) + (color(red)(2) xx color(blue)(3))#

#36a^3 + 27a^2 + 27a + 8a^2 + 6a + 6#

We can now group and combine like terms:

#36a^3 + 27a^2 + 8a^2 + 27a + 6a + 6#

#36a^3 + (27 + 8)a^2 + (27 + 6)a + 6#

#36a^3 + 35a^2 + 33a + 6#