How do you multiply # (a^3 + a^2b^2) (b^4 + a^2)#? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer Harish Chandra Rajpoot Jul 28, 2018 #a^5+a^3b^4+a^4b^2+a^2b^6# Explanation: Given that #(a^3+a^2b^2)(b^4+a^2)# #=a^2(a+b^2)(a^2+b^4)# #=a^2(a( a^2+b^4)+b^2(a^2+b^4))# #=a^2(a^3+ab^4+a^2b^2+b^6)# #=a^5+a^3b^4+a^4b^2+a^2b^6# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 1708 views around the world You can reuse this answer Creative Commons License