How do you multiply and divide #\frac { x ^ { 2} - 3x } { x ^ { 2} + 3x - 10} \cdot \frac { 2x + 10} { 3} \div \frac { x ^ { 2} - x - 6} { x ^ { 2} - 4}#?

1 Answer
Dec 18, 2016

#2/3x#

Explanation:

#color(blue)("Preliminary thoughts")#

The trick is to 'play' with the formats looking for things to cancel out.

Note that:#" "x^2-4" is the same as "x^2-2^2=(x-2)(x+2)#
Also the shortcut for divide is turn upside down (invert) and multiply.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Simplifying the expression")#

Given#" "(x^2-3x)/(x^2+3x-10)color(white)(.)xx(2x+10)/3-:(x^2-x-6)/(x^2-4)#

Write as #(x(x-3))/((x-2)(x-5)) xx(2(x+5))/3xx((x-2)(x+2))/((x-3)(x+2))#

#color(white)(.)#

Cancelling out #(x cancel((x-3)))/(cancel((x-2))cancel((x-5))) xx(2cancel((x+5)))/3xx(cancel((x-2))cancel((x+2)))/(cancel((x-3))cancel((x+2)))#

So this simplifies to #" "2/3x#