How do you multiply #(u ^ { - 2} v ^ { 2} ) ^ { 2} \cdot 2v#?

1 Answer
Jul 1, 2017

See a solution process below:

Explanation:

First, use this rule of exponents to evaluate the term in parenthesis:

#(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#(u^color(red)(-2)v^color(red)(2))^color(blue)(2) * 2v = u^(color(red)(-2) xx color(blue)(2))v^(color(red)(2) xx color(blue)(2)) * 2v = u^-4v^4 * 2v#

Next, rewrite the expression as:

#2u^-4(v^4 * v)#

Use these rules of exponents to multiply the #v# terms:

#a = a^color(red)(1)# and #x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#2u^-4v^color(red)(4) xx v^color(blue)(1) = 2u^-4v^(color(red)(4) + color(blue)(1)) = 2u^-4v^5#

Now, use this rule of exponents to eliminate the negative exponent:

#x^color(red)(a) = 1/x^color(red)(-a)#

#2u^color(red)(-4)v^5 = (2v^5)/u^color(red)(- -4) = (2v^5)/u^4#