How do you multiply #[x+(y+1)]^3#? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer Mark D. Jun 24, 2018 Remove the internal brackets #[x+y+1]^3=[x+y+1][x+y+1][x+y+1]# #[x+y+1][x+y+1]=x^2+xy+x+xy+y^2+y+x+y+1# #=x^2+y^2+2xy+2x+2y+1# #[x^2+y^2+2xy+2x+2y+1][x+y+1]=# #x^3+xy^2+2x^2y+2x^2+2xy+x+x^2y+y^3+2xy^2+2xy+2y^2+y+x^2+y^2+2xy+2x+2y+1# #x^3+y^3+3x^2y+3xy^2+3x^2+3y^2+6xy+3x+3y+1# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 1211 views around the world You can reuse this answer Creative Commons License