How do you reduce the fraction #(6x)/(12x)#?

1 Answer

Find what is common between the numerator and denominator, then cancel to get #1/2#

Explanation:

Let's start by restating the original:

#(6x)/(12x)#

We can express the denominator so that it has a term that is the same as the numerator:

#(6x)/(2*6x)#

We can then express this as the product of 2 fractions:

#(1/2)((6x)/(6x))#

The fraction #((6x)/(6x))=1#, so we can write the whole thing as:

#(1/2)(1)=1/2#