# How do you rewrite the expression (3times6)-(3times3) using the distributive property?

Nov 16, 2016

$3 \left(6 - 3\right) \setminus \leftrightarrow 9$
Depends on what you really need; see explanation for details.

## Distributive property

$a \left(b + c\right) = a b + a c$

## Expression

$\left(3 \setminus \times 6\right) - \left(3 \setminus \times 3\right)$ can also be written as $3 \left(6\right) - 3 \left(3\right)$.

• You see the common factor here is $\setminus \textcolor{red}{3}$:
$\setminus \textcolor{red}{3} \left(6\right) - \setminus \textcolor{red}{3} \left(3\right)$
• This means the other two numbers, $\setminus \textcolor{t e a l}{6}$ and $\setminus \textcolor{m e \mathrm{di} u m a q u a m a r \in e}{3}$, are part of a subtraction set that is multiplied by 3.
$\setminus \textcolor{red}{3} \left(\setminus \textcolor{t e a l}{6} - \setminus \textcolor{m e \mathrm{di} u m a q u a m a r \in e}{3}\right)$
## $3 \left(6 - 3\right)$.
If you need to simplify, then subtract the values inside the parentheses and multiply by 3 $\setminus \rightarrow 3 \left(6 - 3\right) = 3 \left(3\right) = 9$