How do you rewrite #w=3(2a + b) - 4# to solve for #a#?

1 Answer
Nov 9, 2017

#color(blue)(a=(w+4-3b)/6)#

Explanation:

If #w=3(2a+b)-4#
then
#color(white)("XXX")w+4=3(2a+b)#

#color(white)("XXX")(w+4)/3=2a+b#

#color(white)("XXX")(w+4)/3-b=2acolor(white)("xx")rarrcolor(white)("xx")(w+4-3b)/3=2a#

#color(white)("XXX")(w+4-3b)/6=acolor(white)("xxx")"or"color(white)("xxx")a=(w+4-3b)/6#