# How do you simplify (-1)(-2+3)-(4-9)(-2)?

Nov 12, 2015

$- 11$.

#### Explanation:

We use BIDMAS/PEDMAS for this operation. So,
$\left(- 2 + 3\right) = \left(1\right)$,
$\left(4 - 9\right) = \left(- 5\right)$.

We have added all values within brackets. Now we have:
$\left(- 1\right) \left(1\right) - \left(- 5\right) \left(- 2\right)$. We have no exponentials/indices nor divisions, so we move on to multiplications:
$\left(- 1\right) \left(1\right) = \left(- 1\right)$,
$\left(- 5\right) \left(- 2\right) = \left(10\right)$.

We have multiplied. Now we've got:
$\left(- 1\right) - \left(10\right) = - 11$.

Hope it Helps! :D .

Aug 1, 2016

$- 11$

#### Explanation:

Count the number of terms first. There are only 2, but there are parentheses in each term which need to be worked out first.

$\textcolor{red}{\left(- 1\right) \left(- 2 + 3\right)} \textcolor{b l u e}{- \left(4 - 9\right) \left(- 2\right)}$
=$\textcolor{red}{\left(- 1\right) \times \left(1\right)} - \textcolor{b l u e}{\left(- 5\right) \left(- 2\right)}$

=$\textcolor{red}{-} 1 - \textcolor{b l u e}{10}$

=$- 11$