How do you simplify #(1/2) /( x^3y^3)#?

1 Answer
May 19, 2017

See a solution process below:

Explanation:

We can rewrite this expression as:

#(1/2)/((x^3y^3)/1)#

We can now use this rule for dividing fractions to simplify this expression:

#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#

#(color(red)(1)/color(blue)(2))/(color(green)(s^3y^3)/color(purple)(1)) = (color(red)(1) xx color(purple)(1))/(color(blue)(2) xx color(green)(x^3y^3)) => 1/(2x^3y^3)#