# How do you simplify 14+ ( 1- 5) ^ { 2} \div 2?

Mar 20, 2018

$22$

#### Explanation:

P arentheses
E xponents
M ultiplication
D ivision
A ddition
S ubtraction

$14 + {\left(1 - 5\right)}^{2} \div 2$

$= 14 + {\left(- 4\right)}^{2} \div 2$

$= 14 + 16 \div 2$

$= 14 + 8$

$= 22$

Mar 20, 2018

$22$

#### Explanation:

Using order of operations, we will solve this equation. The easiest way to remember the order of operations is by the acronym PEDMAS:
$\textcolor{b l u e}{\text{P}}$$\text{arentheses}$
$\textcolor{b l u e}{\text{E}}$$\text{xponents}$
$\textcolor{b l u e}{\text{D}}$$\text{ivision}$ and $\textcolor{b l u e}{\text{M}}$$\text{ultiplication}$ (left to right)
$\textcolor{b l u e}{\text{A}}$$\text{ddition}$ and $\textcolor{b l u e}{\text{S}}$$\text{ubtraction}$ (left to right)

We have parentheses, so solve that first:
14+(1−5)^2÷2
14+(-4)^2÷2

Now exponents:
14+(-4)^2÷2 (note: a negative number squared results in a positive number)
14+16÷2

Now division:
14+16÷2
$14 + 8$

$14 + 8 = 22$