# How do you simplify (2 3/4 - 3/8) div2/5?

Then teach the underlying concepts
Don't copy without citing sources
preview
?

#### Explanation

Explain in detail...

#### Explanation:

I want someone to double check my answer

1
Mar 9, 2018

As below.

#### Explanation:

$\frac{2 \left(\frac{3}{4}\right) - \left(\frac{3}{8}\right)}{\frac{2}{5}}$

$\implies \frac{2 \left(\frac{6}{8}\right) - \left(\frac{3}{8}\right)}{\frac{2}{5}}$ making Denominator common for the terms in the numerator.

$\implies \frac{2 \left(\frac{6}{8} - \frac{3}{8}\right)}{\frac{2}{5}} = 2 \left(\frac{6 - 3}{8}\right) \cdot \left(\frac{5}{2}\right)$

$\implies = 2 \left(\frac{3}{8}\right) \cdot \left(\frac{5}{2}\right)$

$\implies \left(\frac{19}{8}\right) \left(\frac{5}{2}\right) = \frac{95}{16} = 5 \left(\frac{15}{16}\right)$

Then teach the underlying concepts
Don't copy without citing sources
preview
?

#### Explanation

Explain in detail...

#### Explanation:

I want someone to double check my answer

1
Mar 9, 2018

=> color(teen)(5(15/16)

#### Explanation:

$\frac{2 \left(\frac{3}{4}\right) - \left(\frac{3}{8}\right)}{\frac{2}{5}}$

$\implies \frac{2 \left(\frac{6}{8}\right) - \left(\frac{3}{8}\right)}{\frac{2}{5}}$ making Denominator common for the terms in the numerator.

$\implies \frac{\left(\frac{22}{8}\right) - \left(\frac{3}{8}\right)}{\frac{2}{5}}$

$\implies \left(\frac{22 - 3}{8}\right) \cdot \left(\frac{5}{2}\right)$

$\implies \frac{19 \cdot 5}{8 \cdot 2} = \frac{95}{16}$

=> color(teen)(5(15/16)

• 7 minutes ago
• 8 minutes ago
• 10 minutes ago
• 10 minutes ago
• 42 seconds ago
• 51 seconds ago
• A minute ago
• 3 minutes ago
• 5 minutes ago
• 6 minutes ago
• 7 minutes ago
• 8 minutes ago
• 10 minutes ago
• 10 minutes ago