How do you simplify #(2 - 3i)/(3 + 4i) #?
1 Answer
Dec 17, 2015
Multiply both numerator and denominator by the Complex conjugate of the denominator to find:
#(2-3i)/(3+4i)=-6/25-17/25i#
Explanation:
#(2-3i)/(3+4i)#
#=((2-3i)(3-4i))/((3+4i)(3-4i))#
#=((2)(3)-(3)(3)i-(2)(4)i+(3)(4)i^2)/(3^2+4^2)#
#=((6-12)-(9+8)i)/(9+16)#
#=(-6-17i)/25#
#=-6/25-17/25i#