How do you simplify #(- 3x ^ { 2} y ^ { 0} z ) ^ { 4}#?

1 Answer
Apr 24, 2017

See the entire solution process below:

Explanation:

First, use this rule of exponents to simplify the #z# term within the parenthesis:

#a^color(red)(0) = 1#

#(-3x^2y^color(red)(0)z)^4 = (-3x^2 1z)^4 = (-3x^2z)^4#

Now, we can use these two rules of exponents to complete the simplification:

#a = a^color(red)(1)# and #(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#(-3x^2z)^4 = (-3^color(red)(1)x^color(red)(2)z^color(red)(1))^color(blue)(4) = -3^(color(red)(1) xx color(blue)(4))x^(color(red)(2) xx color(blue)(4))z^(color(red)(1) xx color(blue)(4)) =#

#-3^4x^8z^4 = 81x^8z^4#