How do you simplify #4^(log_4 64) + 10^(log 100)#?

1 Answer
Nov 15, 2016

It can be evaluated to #164#.

Explanation:

Recall that #log_a(n) = logn/loga#.

#=>4^(log64/log4) + 10^(log100/log10)#

#=>4^(log4^3/log4^1) + 10^(log10^2/log10^1)#

#=>4^((3log4)/(1log4)) + 10^((2log10)/(1log10))#

#=> 4^3 + 10^2#

#=> 64 + 100#

#=> 164#

Hopefully this helps!