How do you simplify #(-6)^0#?
3 Answers
Explanation:
- As per property:
#color(blue)(a^0= 1#
So, applying the above:
1
Explanation:
Explanation:
If
#a^n = overbrace(a xx a xx .. xx a)^"n times"#
This has the pleasing property that if
#a^m * a^n = overbrace(a xx a xx .. xx a)^"m times" xx overbrace(a xx a xx .. xx a)^"n times"#
#=overbrace(a xx a xx .. xx a)^"m + n times" = a^(m+n)#
If
With this definition we find that
#a^m * a^n = a^(m+n)#
for any integers
In particular. If
In fact, in the case
In particular, if