How do you simplify #(9x + 10xy) / x#?

3 Answers
Jul 29, 2018

Answer:

#9+10y#

Explanation:

#"factor numerator and cancel common factor"#

#=(cancel(x)(9+10y))/cancel(x)=9+10y#

Jul 29, 2018

Answer:

#9+10y#

Explanation:

#9x+10xy# can be factorised to become #x(9+10y)#

so #(9x+10xy)/x=(x(9+10y))/x=(cancelx(9+10y))/cancelx=9+10y#

Jul 29, 2018

Answer:

#=9+10y#

Explanation:

#(9x+10xy)/x" "larr# factorise the numerator

#=(cancelx(9+10y))/cancelx" "larr# cancel

#= 9+10y#

You can also write two fractions and simplify each.

#(9x)/x + (10xy)/x#

#=9+10y#