How do you simplify #(a-b)^2/(b-a)#?
1 Answer
May 11, 2016
Explanation:
For any number
#(-x)^2 = x^2#
So:
#(a-b)^2/(b-a) = (-(a-b))^2/(b-a) = (b-a)^2/(b-a) = ((b-a)color(red)(cancel(color(black)((b-a)))))/color(red)(cancel(color(black)((b-a)))) = b-a#
excluding
The exclusion is necessary because if
#(a-b)^2/(b-a)#
and the result of division by