How do you simplify # (cot^2 x)/(csc x +1)#?
1 Answer
May 5, 2016
The identity you're looking for is
You can derive this by starting from
#sin^2x + cos^2x = 1#
#cancel(sin^2x/sin^2x)^(1) + stackrel(cot^2x)overbrace(cos^2x/sin^2x) = stackrel(csc^2x)overbrace(1/sin^2x)#
#\mathbf(1 + cot^2x = csc^2x)#
Thus:
#color(blue)(cot^2x/(cscx + 1))#
#= (csc^2x - 1)/(cscx + 1)#
#= ((cscx - 1)cancel((cscx + 1)))/cancel((cscx + 1))#
#= color(blue)(cscx - 1)#
...if and only if
If
Therefore, this answer is valid when