How do you simplify #\frac { 24x ^ { 3} - 47x ^ { 2} - 69x - 18} { 8x + 3}#?
2 Answers
with exclusion
Explanation:
-
Notice that
#24x^3# is divisible by#8x# , with quotient#3x^2# . -
Then
#3*3x^2 = 9x^2# , so split the#-47x^2# into#+9x^2-56x^2# . -
Similarly
#-56x^2# is divisible by#8x# , with quotient#-7x# . -
Then
#3*(-7x) = -21x# , so split the#-69x# into#-21x-48x# , etc...
#(24x^3-47x^2-69x-18)/(8x+3)#
#= (24x^3+9x^2-56x^2-21x-48x-18)/(8x+3)#
#= ((24x^3+9x^2)-(56x^2+21x)-(48x+18))/(8x+3)#
#= (3x^2(8x+3)-7x(8x+3)-6(8x+3))/(8x+3)#
#= ((3x^2-7x-6)color(red)(cancel(color(black)((8x+3)))))/color(red)(cancel(color(black)((8x+3))))#
#= 3x^2-7x-6#
with exclusion
Explanation: