How do you simplify #\frac { pq ^ { 2} r ^ { - 1} s ^ { 6} \cdot p ^ { - 3} q r ^ { 2} s ^ { 0} } { p ^ { 5} q ^ { 8} r ^ { 0} s ^ { 0} }#?

1 Answer
Dec 4, 2017

See a solution process below:

Explanation:

First, use this rule of exponents to rewrite the expression and eliminate some of the variables:

#a^color(red)(0) = 1#

#(pq^2r^-1s^6 * p^-3qr^2s^color(red)(0))/(p^5q^8r^color(red)(0)s^color(red)(0)) =>#

#(pq^2r^-1s^6 * p^-3qr^2 * 1)/(p^5q^8 * 1 * 1) =>#

#(pq^2r^-1s^6 * p^-3qr^2)/(p^5q^8)#

Next, rewrite the numerator as:

#((p * p^-3)(q^2 * q)(r^-1 * r^2)s^6)/(p^5q^8)#

Then, use these rules of exponents to simplify the numerator:

#a = a^color(red)(1)# and #x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))# and #a^color(red)(1) = a#

#((p^color(red)(1) * p^color(blue)(-3))(q^color(red)(2) * q^color(blue)(1))(r^color(red)(-1) * r^color(blue)(2))s^6)/(p^5q^8) =>#

#(p^(color(red)(1)+color(blue)(-3))q^(color(red)(2)+color(blue)(1))r^(color(red)(-1)+color(blue)(2))s^6)/(p^5q^8) =>#

#(p^-2q^3r^color(red)(1)s^6)/(p^5q^8) =>#

#(p^-2q^3rs^6)/(p^5q^8)#

Next, rewrite the expression again as:

#(p^-2/p^5)(q^3/q^8)rs^6#

Now, use this rule of exponents to complete the simplification:

#x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))#

#(p^color(red)(-2)/p^color(blue)(5))(q^color(red)(3)/q^color(blue)(8))rs^6 =>#

#1/p^(color(blue)(5)-color(red)(-2))(1/q^(color(blue)(8)-color(red)(3)))rs^6 =>#

#(1/p^(color(blue)(5)+color(red)(2)))(1/q^(color(blue)(8)-color(red)(3)))rs^6 =>#

#1/p^7 * 1/q^5 * rs^6 =>#

#(rs^6)/(p^7q^5)#