How do you simplify #root(3)(375)#? Prealgebra Exponents, Radicals and Scientific Notation Cube Root 1 Answer Shwetank Mauria May 2, 2016 #root(3)375=5root(3)3# Explanation: To simplify #root(3)375# let us first factorize #375# #375=3xx5xx5xx5# Hence #root(3)375# = #root(3)(3xxul(5xx5xx5))# = #5xxroot(3)3# = #5root(3)3# Answer link Related questions How do you simplify #root(3)96#? How do you simplify #root(3)432#? How do you simplify #root(3)(-54)#? How do you simplify #root(3)(-1080)#? How do you simplify #root(3)(162)#? How do you simplify #root3(72)#? How do you find the cube roots #root3(27)#? How do you find the cube roots #root3(729)#? How do you find the cube roots #root3(64)#? How do you find the cube roots #root3(8000)#? See all questions in Cube Root Impact of this question 10534 views around the world You can reuse this answer Creative Commons License