How do you simplify #sqrt(150x^2y)#?

1 Answer
Jan 19, 2016

Answer:

#sqrt(150x^2y) = 5abs(x)sqrt(6y)#

Explanation:

If #a, b >= 0# then #sqrt(ab) = sqrt(a)sqrt(b)#

Note also that #sqrt(x^2) = abs(x)# for any Real number #x#

So:

#sqrt(150x^2y) = sqrt(25*6*x^2*y)=sqrt(5^2)*sqrt(6x^2y) = 5sqrt(6x^2y)#

#= 5sqrt(x^2)sqrt(6y) = 5abs(x)sqrt(6y)#