How do you simplify #sqrt(x^3y^5)#?

2 Answers
Jul 7, 2015

Answer:

Simplify the square root according to the explanation.

Explanation:

#sqrt(x^3y^5)# =

Simplify.

#sqrt(x^2)sqrtxsqrt(y^4)sqrty# =

Simplify #sqrt(x^2)# to #x#.

#xsqrtxsqrt(y^4)sqrty# =

Simplify #sqrt(y^4)# to #sqrt(y^2)#.

#xsqrtxy^2sqrty# =

Simplify.

#xy^2sqrt(xy)#

Jul 7, 2015

Answer:

#sqrt(x^3y^5) = abs(x)y^2sqrt(xy)#

Explanation:

#sqrt(x^3y^5)#
#color(white)("XXXX")##=sqrt(x^3)*sqrt(y^5)#

#color(white)("XXXX")##=sqrt(x^2*x)*sqrt((y^2)^2*y)#

#color(white)("XXXX")##=sqrt(x^2)*sqrt(x)*sqrt((y^2)^2)*sqrt(y)#

#color(white)("XXXX")##=abs(x)sqrt(x)*y^2sqrt(y)#

#color(white)("XXXX")##=abs(x)y^2sqrt(xy)#