How do you simplify #sqrt12 times sqrt 6#?

2 Answers
Mar 4, 2016

#6sqrt2#

Explanation:

To simplify #sqrt12xxsqrt6#, first let us factorize each of the numbers

#sqrt12xxsqrt6# = #sqrt(2xx2xx3)xxsqrt(2xx3)#

=#sqrt(2xx2xx3xx2xx3)=sqrt(2xx2xx3xx3xx2)#

=#2xx3xxsqrt2#

=#6sqrt2#

Mar 4, 2016

#sqrt 12xxsqrt6=color(blue)(6sqrt 2)#

Explanation:

#sqrt 12xxsqrt6#

Simplify #sqrt 12#.

#sqrt 12=(2xx2xx3)#

#sqrt 12=(2^2xx3)#

Apply square root rule #sqrt a^2=a#.

#sqrt 12=2sqrt 3#

Rewrite the expression.

#2sqrt 3xxsqrt6=#

#2sqrt 18#

Simplify #2sqrt 18#.

#2sqrt 18=2sqrt(2xx3xx3)#

#2sqrt 18=2sqrt(2xx3^2)#

Apply square root rule #sqrt a^2=a#.

#2sqrt 18=2xx3sqrt 2#

#2sqrt 18=6sqrt 2#