How do you simplify #sqrt180/sqrt9#?

2 Answers
May 14, 2018

Answer:

Expand your radicals

Explanation:

For positive m,n #sqrt(m*n) = sqrt(m)*sqrt(n)#.

So then we have # sqrt180 /sqrt9 = (sqrt 9 sqrt20) / sqrt9 = sqrt20 = sqrt4 sqrt5 = 2sqrt5 #

May 14, 2018

Answer:

#2sqrt5#

Explanation:

#"using the "color(blue)"laws of radicals"#

#•color(white)(x)sqrta/sqrtbhArrsqrt(a/b)#

#•color(white)(x)sqrtaxxsqrtbhArrsqrt(ab)#

#rArrsqrt180/sqrt9=sqrt(180/9)=sqrt20#

#rArrsqrt20=sqrt(4xx5)=sqrt4xxsqrt5=2sqrt5#